- Gemmate
- Gemmate \Gem"mate\, a. [L. gemmatus, p. p. of gemmare to put forth buds, fr. gemma bud.] (Bot.) Having buds; reproducing by buds. [1913 Webster]
The Collaborative International Dictionary of English. 2000.
The Collaborative International Dictionary of English. 2000.
gemmate — index germinate Burton s Legal Thesaurus. William C. Burton. 2006 … Law dictionary
gemmate — [jem′āt΄] adj. [L gemmatus, pp. of gemmare, to put forth buds < gemma, a bud: see GEM] having, or reproducing by, gemmae vi. gemmated, gemmating to have, or reproduce by, gemmae; bud gemmation n … English World dictionary
gemmate — /jem ayt/, adj., v., gemmated, gemmating. Bot., Zool. adj. 1. having buds; increasing by budding. v.i. 2. to put forth buds; increase by budding. [1840 50; < L gemmatus budded, adorned with gems. See GEMMA, ATE1] * * * … Universalium
gemmate — gem·mate || dÊ’emeɪt adj. having buds (Botany); reproducing by means of buds (Zoology) … English contemporary dictionary
gemmate — gem·mate … English syllables
gemmate — gem•mate [[t]ˈdʒɛm eɪt[/t]] adj. v. mat•ed, mat•ing 1) dvl having or increasing by means of gemmae 2) zool. bot to put forth buds; increase by budding • Etymology: 1840–50; < L gemmātus budded, adorned with gems. See gemma, ate I gem•ma′tion,… … From formal English to slang
gemmate — /ˈdʒɛmeɪt/ (say jemayt) Botany –adjective 1. having buds; increasing by budding. –verb (i) (gemmated, gemmating) 2. to put forth buds; increase by budding. {Latin gemmātus, past participle, increased by budding, set with gems} …
gemmate — I. ˈjeˌmāt adjective Etymology: Latin gemmatus, past participle 1. : having gemmae 2. : reproducing by a bud II. intransitive verb ( ed/ ing/ s) Etymology: Latin … Useful english dictionary
Droserapollis — Temporal range: Paleocene to Miocene … Wikipedia
Solariella textilis — Taxobox name = Solariella textilis image caption = regnum = Animalia phylum = Mollusca classis = Gastropoda ordo = Archaeogastropoda familia = Trochidae genus = Solariella species = S. textilis binomial = Solariella textilis binomial authority =… … Wikipedia